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Based on the separation property for a rigid-body tracking control problem established by Seo and Akella, this
work explores a model-independent and observer-based attitude tracking control method in which not only the
unavailability of direct/accurate measurement of quaternion attitude is considered, but the inevitable factors of
external disturbances and uncertain (or even time-varying) system parameters as well as actuation saturation are
also explicitly addressed. The proposed control scheme is essentially model-independent in that the system dynamic
model (valid for any rigid-body spacecraft) is used for stability analysis only, but not actually needed for setting up
and implementing the proposed control strategy. As such, there is no need for extensively redesigning or
reprogramming the control algorithms, even if unexpected external disturbances occur or system parameters/
dynamics change during system operation. Those features, highly desirable in practice, are conformed and verified

via theoretical analysis and numerical simulations.

1. Introduction

S ATTITUDE adjustment is one of the fundamental maneuvers

that any spacecraft needs to frequently perform during its oper-
ation, extensive studies on attitude control systems for rigid-body
spacecraft have been carried out during the past decades (e.g., [1-15],
just to name a few). By assuming the availability of direct and exact
measurement of both the body angular rates and the globally valid
(nonsingular) quaternion vector, various full-state feedback attitude
control schemes have been developed.

In practice, however, there exists no physical sensor that permits
precise and direct measurement of the quaternion vector or any other
representation of the body attitude; the attitude quaternion is always
obtained indirectly from accompanying filters/observers that are
driven by measurements from rate gyros, sun sensors, star sensors,
earth sensors, magnetometers, and a host of other sensor candidates
[16]. As such, it is highly desirable to develop partial-state feedback
attitude control schemes that do not rely on direct measurement of
attitude (quaternion) variables. Several interesting results in con-
structing attitude estimators (observers) and integrating them into
partial-state feedback attitude control designs have been reported
[16-18]. In terms of theory, Seo and Akella’s work [16] has explicitly
addressed the closed-loop stability issue when the attitude estimates
generated by observers instead of the actual (true) attitude variables
are adopted in the feedback control schemes, and established a
separation property for the rigid-body attitude tracking control
problem that delivers global stability for the composite closed-loop
system.

It is important to note that, when it comes to implementation, not
only the unavailability of direct measurement of attitude variables
needs to be considered, other inevitable factors such as external
disturbances, modeling uncertainties, as well as actuation constraints
should also be addressed simultaneously. In this work, a new attitude
control scheme that does not rely on direct exact measurement
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of attitude (quaternion) variables is developed. In contrast to most
existing quaternion observer-based control, the proposed method
does not need precise information of inertia matrix or any other
system parameters. Also, the potential effect of external disturbances
on system performance is explicitly addressed in the control design.
The proposed control scheme is essentially model-independent in
that the dynamic model is used for stability analysis only, but never
actually needed in setting up and implementing the proposed control
scheme. Furthermore, as actuation limit always exists in practice, the
developed control algorithms are derived with explicit consideration
of torque limits. The results reported in this paper are motivated in
part by the early work of Cai et al. [15]. They are also closely related
to the work of Seo and Akella [16]. In fact, the results given in this
paper can be viewed as a natural extension of the work in [15,16].

The remainder of the paper is organized as follows: Section II
reviews the basic concepts and relations on attitude representation. In
Sec. III, robust adaptive attitude control algorithms independent of
system parameters/dynamic model and direct/exact measurement of
quaternion vector are presented. The issue of actuation constraints is
addressed in Sec. IV. Simulation results are presented in Sec. V, and
the paper is closed in Sec. VI with comments.

II. Formulization of Attitude Tracking
A. Basics of Attitude Representation
Itis well known that when the quaternion vector is used for attitude
representation, the attitude tracking error g, = [¢,0, ¢%,]7 can be
expressed in terms of the quaternion g, = [, ¢7,]7 (of the body
frame) and the quaternion g, = [q,o, ¢%,]" (of reference frame) as
follows [1]:
] M

where S(.) is a skew-symmetry matrix operator defined by

40950 + Drodbo

= ®q =
Te=19r 4 |:qr0qhv = q0qr0 + S(q50) G0

S(qpu)9r0 = Gpv X qr,» Where hereafter “x” represents the cross-
product operator. Furthermore,
§.=3E(q)o, (@)
and
We = W, — R(Qe)wr (3)

where w, is the angular velocity tracking error,
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E(qe) = [_qevv qeOI3><3 - S(qeu)]T

stands for the quaternion operator, and

R(q.) = (4% — 45qe) 33 + 240005 — 2G.05(4.0)

represents the rotational matrix.

B. Attitude Observer

Most attitude tracking control schemes are developed based on the
assumption that g, is available [1-15]. However, in practice, the atti-
tude quaternion cannot be physically measured directly by attitude
sensors. Thus, an attitude observer is usually needed to estimate the
attitude quaternion values for feedback control. Following the work
in[16,19], we consider the following quaternion measurement model
and its estimator:

y(1) = Rlgq,(D]x(1) “4)

¥(1) = Rig,(n]x(1) ®)

where y(f) denotes the actual attitude measurement signal from
attitude measurement sensor, y(7) is the estimated measurement in
the observation frame O, x(¢) is the measurement reference signal
(unit vector governing the inertial direction of observation), and x()
is assumed to be bounded with time [16]; ¢, () represents the esti-
mated value of g, () in observation frame O, which is updated by

G0(1) =3E(q,) (@, + vy x3).  y>0 (6)

The observation error of the observer, denoted by g, = [7.0. ¢%,]"
(difference between ¢, and g,,), shares the following relation via the
rotational matrix

R(g.) = R"(q,)R(q,) 7

and the estimated attitude tracking error, denoted by g, = [G.¢, §%,]"
(difference between ¢, and ¢,), bears the relation of

G.=4,9q;" ®)

We define estimated angular velocity tracking error of @, as

w,=w, — R(ée)a)r (9)
Then, it follows that
e =3E@)wp — R(Go)w, + vy x 5] (10)

Obviously, if [G,ys Geps @] = 0, then g, — q,, ¢, = q,,and w, —
o, from Egs. (7-9), such that the objective of attitude tracking control
with a quaternion observer can be addressed by regulating

lim (G, Gevr @] = 0
1—00
Note that, from Eqs. (4-7), it is derived that [16]

i = [{;Eo] _ [ o Vaeolde, x 2P }
‘ éev V[qeo(%w X .X) XX — (X qev)S(qev)(qev X )C)]

L

¥ %3 =R(@p)[2Ge0(Ger X X) X X = 2(x"G)(Goy x 1) (12)

which will be applied to future control development.

The following lemma confirms the convergence of the observer
defined in Egs. (4-6).

Lemma 1 [16]: The observer defined in Eqs. (4—6) is asymptotic
stable in that the estimated attitude quaternion ¢, asymptotically
approaches the actual attitude quaternion g, as q? (T)q,(T) # 0 for
some T > 0.

Remark 1: Fundamentally, Lemma 1 (see [16] for proof) ensures
that the observer given by Eqs. (4-6) leads to

limg,, =0

—>00
in practice, so that ¢,(f) = ¢q,(t) as t — oo. This separation
property established for a rigid-body spacecraft tracking control
problem by Seo and Akella [16] will be used later on for our control
design. Also note that ., (7) = ¢ ()q,(¢) for all t > 0 from Eq. (7)
[20], so that g7 (0)g,(0) = 0 corresponds to the case of G.o(f) =0
for V¢ >0 from Eq. (11), which is an unstable equilibrium.
Therefore, any imperceptible computation errors or any other distur-
bances would always make the condition G.o(T) = g7 (T)q,(T) # 0
valid practically for some 7" > 0 [16].

III. Model-Independent Attitude Control Design

Our objective is to develop a model-independent attitude tracking
control scheme that does not explicitly rely on any information about
the system model/parameter yet is robust against external distur-
bances. To this end, we introduce 7, € R* (external disturbance
torque) as well as uncertain or even time-varying (due to, for
instance, fuel burning or payload release/addition) system para-
meters (i.e., inertia matrix J) into the vehicle dynamic model to get

%(Jw,,) =—-S(wp)Jwp, + T+ 14 (13)

where J € R¥3 is symmetric and positive-definite inertial matrix,
and T € R? is the torque acting on the vehicle. Define the filtered
estimate error variable

$@e. Gev) = D¢ + G, >0 (14)
Then, Eq. (13) can be expressed in terms of § as follows:

Js=v—L54+L;, () (15)

where

L;., () = =S(w,) o, + ﬂjéeu + %j§—jwb +

The reason for adding %j 5 to Eq. (16) and subtracting it from Eq. (15)
is to facilitate stability analysis, as will be apparent later. Note that the
lumped term L;,,(.) containing three parts: 1) system nonlinearities
(depending on desired attitude trajectory and physical parameters,
the inertia matrix in particular), 2) external disturbances (changing
with operation conditions), and 3) the effect due to time-varying
moment inertia matrix. One of the major challenges for attitude track-
ing control design stems from such an uncertain term in the dynamic
equation. Obviously, a feasible and practical control scheme should
not be based upon such L;, (.) directly.

In this work, we explore a method that is based on the core infor-
mation of L;,, (.) extracted from the following assumptions:

1) The inertial matrix J(.) is symmetric positive definite, the entire
operation of the vehicle, that is, JT = J > 0.

2) Both J(.) and J(.) are bounded for some unknown constants,
thatis, |J(.)]| < ¢, and ||J(.)|| < ¢, for unknown constants ¢, > 0
and cg; > 0.

3) Both the reference angular velocity and its variation are
bounded, that is, ||w,|| < ¢, and ||@,| < ¢4, for some unknown
constants ¢, > 0 and ¢4, > 0

4) The external disturbance is modeled by the boundary constraint
lzall < cg + cyllwyl|* for ¢, >0 and ¢, >0 unknown but
constants.

Note that the symmetric and positive-definite property of the
inertial matrix is always true with rigid spacecraft, thus assumption 1)
is reasonable. Assumption 2) is acceptable as long as the mass
(including the fuel) of the spacecraft does not change infinitely fast
during system operation. Assumption 3) is also necessary for prac-
tical and feasible attitude tracking. Also note that the external dis-
turbance is related to gravitation, solar radiation, magnetic forces (all
could be assumed bounded), and aerodynamic drags (propotional to
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the square of angular velocity). Therefore, for all those disturbances
considered, assumption 4) is practical.

Based upon the preceding assumptions, the following inequalities
are easily established:

IS(@p)Japll < 1IS(@p) I/ Hles ]| < €l 1?

187Gl < Beslloyll + Beslew + v)
10.57 5 —Jewy| < 0.5¢,,(ll& ]l + B)
+ callopll = cas[0.5(8 + cu) + 1.5]wp ]
VS(&e + vy x DRG]l < esen(lwpll + o + ¥)
IVR(G )@, || = c;canl|R@GI =< ¢sCau (17)

where ”éev” = 1’ ”R(ée)” = 17 ”ée0]3x3 + S(éev)” = 1 have been
used. Accordingly, it can be concluded that, although L;, , (.) contains
nonlinear, uncertain, and time-varying terms, there always exists
some unknown constants a, > 0, a; > 0, a, > 0, such that

L5, Ol < ag + arllwp | + asllw, > = a" @ (18)
where a = [ay, a;, a;]" and @ =1, [y, ||, ||*]"

It is important to note that Eq. (18) holds for any type of rigid
spacecraft. Furthermore, ® is independent of physical parameters of
spacecraft and operation conditions of the vehicle: it represents the
core information of the system. Therefore, the following observation
can be stated.

Observation 2: For spacecraft satisfying assumptions 1-4, the
relation as described in Eq. (18) is always true regardless of external
disturbances, uncertain and time-varying inertia matrix, quaternion
observation error, or type of spacecraft.

This observation, if used properly, could allow for a truly model-
independent attitude control scheme to be developed, as stated in the
following proposition.

Proposition 3: Consider a spacecraft with time-varying inertia
matrix J, external disturbances, and attitude observer defined in
Eqgs. (4-6). Design the following quaternion observer-based attitude
tracking control scheme:

o A ared
(w,, qeu)|q,¢o,j7é0 = ~lko + k()]s k0 = W
. . [I5]° @ ®
a=—ba+ by, =Tl "
1 2||s||+5 1+||CI)” 4

where §(@,, g,,) is defined as in Eq. (14), ky > 0, u > 0, b; > 0, and
b, >0 are control parameters chosen by the designer, &=
[L, [lwp I, llwp |I*]T. Then, it is ensured that 1) the estimated attitude
and velocity tracking errors approach to their actual values asymp-
totically, 2) the actual attitude and velocity tracking errors converge
to a small set containing the origin, and 3) the closed-loop system is
globally stable in that all the internal signal variables are uniformly
ultimately bounded and continuous everywhere.
Proof: Consider the following Lyapunov candidate function:

1. . R A I 1
V= 5 TJS + k()ﬂ[(l - qeO)z + qZL'Qeu] + Z—bzaTa + quuqeu

(20)

where @ = a — a. The structural property of J is used in constructing
the Lyapunov function to allow for a control scheme to be developed
without using J explicitly in the control algorithms. Taking the
derivative of V, it follows that
P DI oA
V=315 + 581§ +koBalw, + vy x 31— a" bi = Ge0de0
2

= §T[T + L&zd(')] + kOIBévae + koﬁyéeru(y X )A))
a

by
Substituting the controller given in Eq. (19) into Eq. (21), we have

—a’ Y@rollGen x x| (1)

I5]12aT @

HETE

. ko o~ N A
1= —7°[||S||2 1@ + B4l -

- aTb—er koBYdr(y % 3) = vzlge x 2l = = {517

ell§lla’ ®
51+ &

. R L ISP
+ 11> + B geull?] + @™ | 7 -0+
@l + Bl Geoll] e b

. . Koy . .
+ koByde,(y x 9) < —30[||S||2 1@ + B2l Geull?)

by ... . .
+ ;I“T“ + pa, + koByql,(y x 3) (22)
2

where a,, = max(ay, a,, a,). Note that
a'a=-Ya"a+a"al+1a"a=—(a—a/2)"(a—a/2) +31a"a
(23)
which allows Eq. (22) to be further expressed as

B
2

. k
Vf—min[ g by,

T 12 1}v e @9

where

kof? . b,
— fP = 2, LT
& S,‘Z‘(E’{ 5 (1= de) o, @t na

N A | Q.
+hBAATRO X D + 3 Thda <00 25)

Thus, the closed-loop system is globally stable. Furthermore, it can
be shown from Eqgs. (22) and (23) that

. koo o R R
V= —30[||S||2 F1@el* + BGeolI?] + ¢ (26)
with

b R n
ey =supy—-a’a+ pa, + kBylgL (v x 9§ <oco  (27)
=0 4b2

Clearly, V(1) < 0if |, (D)l > v/2¢3/ko, 100Dl > v/2¢3/ (ko).
or ||5(r)]| > +/2c3/ ko according to Eq. (26), which implies that V(r)
decreases monotonically. The decrease of V(¢) eventually drives
I5()] and 4., ()] into [[S()] < v/2¢3/ky and |lq., (DI <
V2¢3/(koB?) from Egs. (20) and (26). Moreover, V() keeps
decreasing unless ||@,] also enters into ||@,(7)] < +/2c5/k, from
Eq. (26). Therefore, the estimated tracking errors are bounded
ultimately as

. ) X ) 26‘3 R 26‘3
,ILTO[wE(t)’q”(Z)] IS (||wg|| < “k_ov lGeoll < \/75/32)

N A 2c
0 (0. + paal = | 2) e8)
0

which is a small set containing the origin [@,, 4,,] = 0.

From Lemma 1, we know that ¢,(f) — ¢,(t) as t — oo, thus
q,(t) — q,(t) and ®, — w, as t — oo. Therefore, it is concluded
from Egs. (27) and (28) that the actual attitude tracking error ¢, and
angular velocity tracking error w, converge to a small set containing
the origin, and larger k, b, and smaller y, b, lead to smaller error set.

Remark 2: The proposed control scheme is motivated by [15]. As
the quaternion vector is unavailable for direct feedback, the estimated
quaternion variables are incorporated in the algorithm. As such, a
new Lyapunov function is employed for stability analysis. Because
the algorithm only makes use of the very general (core) information
associated with the underlying vehicle, the resultant control scheme
turns out to be simpler in structure, less involved in control design,
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and less demanding for online computation and implementation, as
compared with most existing methods.

Remark 3: 1t is worth noting that the proposed control scheme
demands little information about system parameters/dynamics; it is
an essentially model-independent attitude tracking control method in
that redesign or reprogramming is not needed even if external distur-
bances occur and system parameters or dynamics change during
system operation. To illustrate this point, consider the following pos-
sible situations: 1) uncertain dynamics occur due to sudden change
or continuous variation of J from J, to J, == AJ, which leads to
+AJa, + Adw, + S(w,)AJw, into the system dynamics; 2) addi-
tional unknown nonlinear term N(.) adds to the model due to, for
instance, possible component failures; and 3) unexpected external
disturbances act on the system.

Clearly, the preceding situations can be coped with by the pro-
posed control scheme without increasing any difficulty, complexity,
or cost in design and implementation, as long as J(.) satisfies
assumptions 1-2, N(.) is upper bounded by ||N| < dy + d, | w, | +
d,||wy||* for some unknown constants d, > 0, d, > 0, and d, > 0,
and the disturbances obeys assumption 4. Although there is no need
to redesign or reprogram the control scheme to accommodate those
uncertainties, one would typically have to perform some degree of
control retuning to preserve the performance characteristics if the
underlying plant has experienced a significant change.

IV. Robust Adaptive Control Under Actuation Limits

An important consideration in practical application is the torque
constraint due to actuation saturation as imposed as

|Ti| = Tmax > (l = 15 27 3) (29)

where T = [1y, T, 73] and 1,,,,, > 0 denotes the maximum allowable
torque of each actuator. For the system under consideration to admit a
feasible attitude tracking control scheme, the following assumption
is needed:

5) There exists some constant t,, > 0, such that

Tmax = aTCD + T (30)

where t,, is called the power margin of the control system. This
assumption means that the actuation system can supply combined
torque sufficient enough to allow the vehicle to perform a given
maneuvering operation under external disturbances. A similar as-
sumption has been used in [9,11,13-15] when addressing spacecraft
attitude tracking without considering attitude estimation error.
To the best of our knowledge, no result is available in the literature
that deals with the attitude tracking problem when modeling uncer-
tainties, external disturbances, estimation error, and torque limits
occur concurrently.

Proposition 4: Consider the attitude tracking error dynamics given
in Eq. (15). Stable attitude tracking as described in Proposition 3 is
ensured under assumptions 1-5, if the following control scheme
inspired by [15] is implemented:

A K
r(wg,qw)w,,-#o=—rmxsat([ko+k(z)1 ) 31

max

with
Sat([k() + k([)]§/7:max)

3 {| E1S]] > Toax /Ko + k(1)

(32)
[ko + k(1)]S/Tmax  Otherwise

where k(f) and other variables and parameters are defined as in

Eg. (19).

Proof: The stability of the control scheme is verified by examining
two cases: case 1) ||S|| < Tmax/[ko + k(7)] and case 2) |5]|>
7"max/[kO + k(t)]

Case 1: ||S]| < tmax/lko + k(#)]. Under this case, the con-
troller (31) becomes © = —[k, + k(7)]s. Considering the Lyapunov
candidate function as in Eq. (20), it follows that

V =3[t + L()] + koBahw, + koByal,(v x 9)

~p a ~ ~ k() ~ N
— T = Yl x 2 < =0 + P
2

. by .. . .
+ B30 1?1 + b—laTa + pa, + koByal,(y x ) 33)
2

The result thus is established using the same argument as in the proof
of Proposition 3.

Case 2: ||S|| > Tmax/lko + k(8)], T = —TmaxS/ |15 |, which satisfies
|T;] < Tomax» (i = 1,2, 3). We need to address two subcases:

A) Suppose §,0(0) = ¢7(0)q,(0) # 0, the Lyapunov candidate
function is chosen as

.. . . o a 16y .. .
V= E T‘IS + 2ﬂ[(l - qe())z + qquev] + équZL'qev (34)

e0

and its time derivative can be determined as

. JUEY 1.... JU R R
V=5"J5+ ESTJ §+2BG¢L,0, + 2Byql,(y x 9)

32)/ L ~ ~ AT A ~ ~
— i G0 = §T[r + L*() = S+ 2BqL,&, + 2By, (y % 9)
e0
32y% . o Tinax arn .
=2 Gy X XP@ + @) < — 575 4 |5l ®
420 [Isll

=181 = Bl I + 2BY 14l x DI = 322110, > ]2
< =817 = 1017 = B*l1geu I + 8BY1eullll Ger x Xl

- . . B -
= 32701 Gew x x| = =7, 151 = 1@ | -3 [GelI* <0 (35)

where L*(.) = Ly, (.) + §, which obviously still satisfies ||L*| <
a’ ®. From Eq. (35), it is deduced that @,, §,, € £, N L, and then
Qov» ©p, D, d,a,k € L, and &, € L. Therefore, [@,, q,,(£)] will
be eventually driven to case 1, otherwise using Barbalat’s lemma,
lim,_, . [®,, §.,(f)] = Obased on the fact ,, G, € L, N L, and @,,
éev E ﬁOO'

B) Suppose §.0(0) = ¢7(0)g,(0) =0. For this subcase, the
Lyapunov candidate function defined Eq. (34) is invalid due to
G.0(0) = 0, so that a new Lyapunov candidate function is needed to
analyze the stability. Let us choose it as follows:

V=318 4+ 28101 - 4o0)” + GhGal + 33080 (36)
Upon taking the time derivative of V with respect to time, we have
e S PN T AT A n AN~ 2
V=815 + 281 8 428400, + 2Byden(y X ) = Geode

=817 4+ §T[L*() — 8] + 2B, + 2By 4o, (y x §)
T,

== ”“;T{ 575 + |1Slla™ @ = llw 1> = B 1de I + 2BVI1Gel
= _||§||fm - ”we”2 - (ﬂ”éev” - 7/)2 + ]/2
= =I5z — llwe 1> = Bllgeo I (BllGeoll — 27) (37

Then, it can be concluded by using similar analysis to that used in
Eq. (26) that

. . . 2
lim,0,3,01 € (ol < . Il <)

2
0 (Vo + paal <7) G8)

m

That is, ®,, §., € L, Which implies that g,,, w, € L., and ®, a, a,
k € L. Thus, ultimately uniformly bounded stability is achieved for
this subcase.

To summarize, for all the possible cases, the preceding analysis
indicates that the control scheme given in Eq. (31) ensures stable
attitude tracking in the presence of external disturbances, uncertain
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or even time-varying system parameters, and attitude estimate error,
as well as torque limit.

Remark 4: 1t is worth mentioning that our attitude control scheme
is derived under the following extreme conditions: 1) little infor-
mation on the vehicle about its nonlinear dynamics, modeling
uncertainties, and physical parameters; 2) limited information on its
operational environment in terms of operational conditions and
external disturbances; 3) torque limits; and 4) attitude estimation
error. As such, the developed control scheme is more practical and
feasible as compared with most existing strategies.

V. Simulation Study

We now conduct numerical simulation studies to validate the
effectiveness of the quaternion observer-based robust adaptive con-
troller developed in the previous section. The same inertia matrix and
initial conditions as used by [16] are used in the simulation:

20 12 09
J=Jy=|12 17 14
09 14 15

7, = 5(||w||? + 0.3)[cos 0.2, sin 0.5¢, cos 0.8¢]”
and time-varying moment inertia matrix

J=1Jy+ AJ

AJ = diag([3, 2. 1D[1 + e~ + 2u(t — 10) — 4u(t — 20)]

are incorporated into the model, where Jj, is the constant portion of
J(t), and u(.) is defined as u(r > 0) = 1 and u(¢ < 0) = 0. Note that
both continuously time-varying and jump change of the diagonal
element of J(.) is involved, as shown in Fig. 1, arisen from, for
instance, fuel consumption (burning) and/or payload release/
addition.

0.45 v T T T T
0.4} ==-=="Nonsaturated Control ||
’ Saturated Control

q,(0) = [/8/3,1//27,1/3/27, 1/~ 27"

q,(0) =[1,0,0,0",  ,(0) =[0,0,0]"

q,(0) = [v/3/2,1/¥/12,1/¥/12,1/V/12]" for ¢}(0)q,(0) # 0

4,(0) = [~1/3,2+/6/9,2+/6/9,2+/6/9]"  for ¢%(0)¢,(0) =0

The reference angular velocity is given as w,(f) = z(?)[1, 1, —1]7,
where z(¢) is defined as

2(f) = 0.3 cos 1(1 — e~ 917) + (0.087 + 0.006 sin £)re 00!’

Any time-varying unit vector with bounded time derivative can be
chosen as the reference signal for the observer. In our simulation, we
select the same x(f) = [cos ¢, sint, 0]" as used in [16].

The simulation is to explicitly address external disturbances,
unknown time-varying systems parameters, torque limits, and un-
availability of direct/accurate measurement of quaternion attitude,
as usually encountered in practice. Virtually all existing model-
dependent attitude control methods are inapplicable directly in this
case. To test the effectiveness of the proposed control schemes
defined in Eqgs. (19) and (31) in dealing with unknown and time-
varying J(.) as well as 7,(.), the following disturbance torque

........... A1)

6F. —— AJ(22)]
AJ(33

5F =

4t 1 .

Ju
w
:
'I
14
’
’
]
I
'l
,

0 5 10 15 20 25 30 35 40 45 50
Time (sec)

Fig. 1 Continuously time-varying and jump variation of the diagonal
element of the inertia matrix (due to, for instance, fuel consumption and/
or payload release/addition).
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Fig. 2 Quaternion attitude tracking error norm under g/ (0)¢,(0) # 0
(with/without torque limits).
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Fig. 3 Angular velocity tracking error norm under g/ (0)q,(0) # 0
(with/without torque limits).
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Fig. 4 Control torque norm under ¢! (0)q,(0) # 0 (with/without
torque limit).
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To achieve high precision control with smooth control action, the
control parameters are chosen as
g=1, ko = 10, b, =0.002, b, =30
for both controllers as defined in Eqs. (19) and (31). The parameter x
is a control parameter that can be chosen freely with a wide range:
# =0.002 for the controller in Eq. (19) and p =0.04 for the
saturated controller in Eq. (31) with 7,,, = 25. Simulation results are
presented in Figs. 2-7. It is interesting to note that the proposed
control schemes lead to fairly good control performance without
using any information on 7,(.) or J(.) (not even J,) for both
g7 (0)q,(0) # 0 and g7 (0)q,(0) = 0. In setting up and implement-

1.2F T T T T T T T T T 5
------ Nonsaturated Control
Saturated Control

20 25 30 35 40 45 50
Time (sec)

Fig. 5 Quaternion attitude tracking error norm under ¢! (0)¢,(0) =0
(with/without torque limits).

5F T v T T v T T T T
------ Nonsaturated Control
45r Saturated Control
41 i

llo, I

Time (sec)

Fig. 6 Angular velocity tracking error norm under g/ (0)¢,(0) =0
(with/without torque limits).
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u
[
10
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Fig. 7 Control torque norm under g¢!(0)q,(0) =0 (with/without
torque limits).

ing the control scheme, one only needs to select the nonrestrictive
control parameters f8, ky, b, b,, and p. Analysis and simulation
show that larger §, kg, b,, and smaller b,, u lead to better control
performance (quicker response and smaller steady error) at the price
of alarger starting (initial) control signal, thus certain tradeoffs might
be necessary in practice.

VI. Conclusions

Attitude tracking control of spacecraft under extreme operation
conditions is studied in this work. Under mild assumptions that
always hold for rigid-body spacecraft, a new attitude tracking control
scheme without using direct and accurate attitude measurement is
developed. The novelty of the proposed control strategy also lies in
its robustness against inevitable external disturbances and its inde-
pendence of system parameters/dynamics; the dynamic model of the
rigid-body spacecraft only plays a role in stability analysis but is
never needed for control setup and implementation. Furthermore, the
control scheme can be setup effortlessly by select certain nonre-
strictive control parameters. These features make it possible to con-
tinuously maintain high-precision attitude tracking control of the
vehicle during its entire operation, without the need for completely
redesigning or reprogramming of the controller under widely varying
operation conditions.
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